
F. Özbudak and F. Rodríguez-Henríquez (Eds.): WAIFI 2012, LNCS 7369, pp. 119–135, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Software Implementation of Modular Exponentiation,
Using Advanced Vector Instructions Architectures

Shay Gueron1, 2 and Vlad Krasnov2

1 Department of Mathematics, University of Haifa, Israel
2 Intel Corporation, Israel Development Center, Haifa, Israel

Abstract. This paper describes an algorithm for computing modular
exponentiation using vector (SIMD) instructions. It demonstrates, for the first
time, how such a software approach can outperform the classical scalar (ALU)
implementations, on the high end x86_64 platforms, if they have a wide SIMD
architecture. Here, we target speeding up RSA2048 on Intel’s soon-to-arrive
platforms that support the AVX2 instruction set. To this end, we applied our
algorithm and generated an optimized AVX2-based software implementation of
1024-bit modular exponentiation. This implementation is seamlessly integrated
into OpenSSL, by patching over OpenSSL 1.0.1. Our results show that our
implementation requires 51% less instructions than the current OpenSSL 1.0.1
implementation. This illustrates the potential significant speedup in the
RSA2048 performance, which is expected in the coming (2013) Intel
processors. The impact of such speedup on servers is noticeable, especially
since migration to RSA2048 is recommended by NIST, starting from 2013.

Keywords: modular arithmetic, modular exponentiation, Montgomery
multiplication, RSA, SIMD, AVX, AVX2.

1 Introduction

The cryptographic algorithms that underlie SSL/TLS connections are a critical
computational load for the supporting servers. As the major ingredient in the
SSL/TLS handshake, RSA is an important factor, and NIST’s recommendation for
key-lengths [1], makes RSA2048 an important optimization target.

Currently, software implementations of RSA are “scalar code” that use ALU
instructions (e.g., ADD/ADC/MUL). Improvements in the performance of
ADD/ADC/MUL have made the scalar implementations very efficient on the modern
x86_64 processors (see [7], [5] for details).

In this paper, we show that RSA software can gain significant performance by
“vectorized” implementations that utilize the modern SIMD (vector) architectures.
This is done by implementing a version of the RSAZ algorithm (short for RSA
ZARIZ - Hebrew for “quick”) [7]. SIMD (aka vector architecture), an acronym for
“Single Instruction Multiple Data”, is an architecture where a single instruction
computes a function of several inputs, simultaneously (see e.g., [9]). These inputs are
called “elements” and reside in registers that hold a few of them together. Early SIMD

120 S. Gueron and V. Krasnov

architectures used the MMX instructions that operate on 64-bit SIMD registers. It was
followed by the SSE architecture that introduced 128-bit registers. The Advanced
Vector Extensions (AVX) extends the SSE architecture in several respects, e.g., by
introducing non-destructive destination and floating point operations over 256-bit
registers [11]. AVX2 is the latest SIMD architecture. It has been recently disclosed,
and will be first introduced in the next architecture (Codename “Haswell”) in 2013
[12]. AVX2 includes sixteen 256-bit registers (called YMM’s), each one is capable of
holding eight 32-bit elements, or four 64-bit elements. It also offers new integer
instructions that operate on these wide registers.

Many algorithms (often in media processing, e.g., DCT) operate on multiple
independent elements, and are therefore inherently suitable for SIMD architectures.
However, big-numbers (multi-digit) arithmetic, which is in the heart of RSA
computations, is not naturally suitable for vector architectures: the digits of the multi-
digit numbers are not independent, due to carry propagation during arithmetic
operations such as addition and multiplication.

We offer here an efficient method for using SIMD architecture for big-numbers
arithmetic, in particular for modular exponentiation. Some attempts to use SIMD for
big-numbers arithmetic (and RSA) have been made. For example, Page and Smart
[19] suggested using SIMD architectures to calculate several exponentiations in
parallel, and using a “redundant Montgomery representation” (which we call here
Non Reduced) to avoid conditional final subtractions in Montgomery Multiplications.
Lin [16] implemented a 128-by-128 bits integer multiplication function using SIMD
instructions on Freescale’s e600 32-bit processor, and used it as a building block for
larger multiplications. Reference [10] suggests converting the big-numbers to
numbers that have only 29-bit digits, and use SIMD operations for multiplying them.
Such a method is also used in [2] for prime field ECC. This is and underlying idea in
this paper as well, although we do not use it (directly) for integer multiplications.

We use our algorithms for efficiently computing (a variant of) Montgomery
Multiplications (and Squaring). The novelty in our approach includes the balancing of
the computational workload between the SIMD and the ALU units, in an efficient
manner. This resolves the bottlenecks that exist in a purely SIMD or purely ALU
implementation.

2 Preliminaries

2.1 The RSA Context

In this paper, we discuss RSA cryptosystem with a 2n-bit modulus, N = P × Q, where
P and Q are n-bit primes. Let the 2n-bit private exponent be d. Decryption of a 2n-bit
message C requires one 2n-bit modular exponentiation Cd mod N. To use the Chinese
Remainder Theorem (CRT), the following quantities are pre-computed: d1 = d mod
(P-1), d2 = d mod (Q-1), and Qinv = Q-1 mod P. Then, two n-bit modular
exponentiations, namely M1 = Cd1 mod P and M2 = Cd2 mod Q, are computed (M1,
M2, d1, d2

 are n-bit integers). The results are recombined by using Cd mod

 Modular Exponentiation Using AVX Architectures 121

N = M2+(Qinv × (M1-M2) mod P) × Q. Using the CRT, the computational cost of a
2n-bit RSA decryption is well approximated by twice the computational cost of one n-
bit modular exponentiations. In our context, we can assume that by construction (of
the RSA keys), 2n-1 < P, Q < 2n.

2.2 The Non Reduced Montgomery Multiplication

For a detailed description of software implementation of modular exponentiation, and
the resulting performance, we refer the readers to [7]. In general, the critical building
block in modular exponentiation computations is modular multiplication, or an
equivalent. Here, we use the Non Reduced Montgomery Multiplication (NRMM), as
defined in [4] (see also [20], [22]). NRMM is a variation of the well known
Montgomery Multiplication (MM hereafter; see also [3], [14], [15], [21])

Definition 1. [Montgomery Multiplication] Let M be an odd integer (modulus), a, b
be two integers such that 0 ≤ a, b < M, and t be a positive integer (hereafter, all the
variables are non-negative integers). The Montgomery Multiplication of a by b,
modulo M, with respect to t, is defined by MM(a, b) = a×b×2-t mod M.

Definition 2. [Non Reduced Montgomery Multiplication] Let M be an odd integer
(modulus), a, b be two integers such that 0 ≤ a, b < 2M, and t be a positive integer
such that 2t > 4M. The Non Reduced Montgomery Multiplication of a by b, modulo
M, with respect to t, is defined by

()()
t

t MbaMba
baNRMM

2

2mod
),(

1 ×××−+×=
−

 (1)

We say that 2t is the Montgomery parameter. For the Non Reduced Montgomery
Square, we denote NRMM (a, a) = NRMSQR (a).

The following lemma shows how NRMM can be used, similarly to MM, for efficient
computations of modular exponentiation.

Lemma 1. Let M be an odd modulus a, b be two integers such that 0 ≤ a, b < 2M, and
t be a positive integer such that 2t > 4M. Then, a) NRMM(a, b) < 2M; b) NRMM(a, 1)
< M.

Proof. To prove part a, we write

MM
M

M
M

MMMba
baNRMM

tt

t

2
4

4

2

22

2

2
),(

2

=+<+×<×+×< (2)

To prove part b, we write

MM
MMa

aNRMM
tt

t

+<+<×+<
2

1

2

2

2

2
)1,((3)

122 S. Gueron and V. Krasnov

The last inequality follows from 2t > 4M and a < 2M. Therefore, NRMM (a, 1) is fully
reduced modulo M.

Remark 1. Lemma 1 (part a) shows the “stability” of NRMM: the output of one
NRMM can be used as an input to a subsequent NRMM.

Remark 2. Since NRMM(a, b) mod M = MM(a, b), it follows, from the bound in
Lemma 1, that NRMM(a, b) is either MM(a, b) or MM(a, b)+M.

Remark 3. Suppose that 0 ≤ a, b < 2M, c2 = 22t mod M, a` = NRMM(a, c2), b` =
NRMM(b, c2), u` = NRMM(a`, b`), and u = NRMM(u`, 1). Then, Lemma 1 implies
that a`, b`, u` are smaller than 2M, and u = a×b mod M.

These remarks indicate how NRMM can be used for computing modular
exponentiation in a way that is similar to the way in which MM is used. For a given
modulus M, the constant c2 = 22t mod M can be pre-computed. Then, ax mod M (for 0
≤ a < M and some integer x) can be computed by: a) Mapping the base (a) to the (non
reduced) Montgomery domain, a’ = NRMM (a, c2) b) Using an exponentiation
algorithm while replacing modular multiplications with NRMM’s c) Mapping the
result back to the residues domain, u = NRMM (u’, 1).

2.3 The Relevant AVX2 Instructions

The AVX2 vector operations we use in our context are (see [12] for details):

- VPADDQ – addition of four 64-bit integer values, from one YMM register
and four 64-bit values from another YMM register, and storing the result in a
third YMM register.

- VPMULUDQ – multiplication of four 32-bit unsigned integer values, from
one YMM register, by four 32-bit values from another YMM register,
producing four 64-bit products into a third YMM register.

- VPBROADCASTQ – copying a given 64-bit value, four times, to produce a
YMM register with four equal elements (with that value).

- VPERMQ – Permutes 64-bit values inside a YMM register, according to an
8-bit immediate value.

- VPSRLQ/VPSLLQ – Shift 64-bit values inside a YMM register, by an
amount specified by an 8-bit immediate value.

3 Modular Exponentiation with Vector Instructions

SIMD instructions are designed to repeat the same operation on independent elements
stored in a register. Therefore, it has an inherent difficulty with efficiently handling
carry propagation associated with big-numbers arithmetic. As an example, the carry
propagation in a (2 digit) × (3 digit) multiplication, is illustrated in Fig. 1.

 Modular Exponentiation Using AVX Architectures 123

Fig. 1. Illustration of the carry propagation during a multiplication of the two integers A (3
digits) and B (2 digits). The schoolbook method is used. Each digit of A is multiplied by each
digit of B, and the appropriate sub-products are aligned and summed accordingly. The digits of
the partial sums are not independent of each other, due to the carry propagation, and this is why
SIMD architectures would require some cumbersome manipulations to handle such a flow.

3.1 Redundant Representation

Modular exponentiation can be translated to a sequence of NRMM/NRMSQR’s. We
show here how to optimize these operations, using vector instructions. The underlying
idea is to always operate on “small” elements (i.e., less than 232). This allows two big-
numbers products to be summed up, without causing an overflow inside the 64-bit
“container” that holds the digits of the accumulator. The cumbersome handling of the
carry propagation can therefore be avoided. To this end, we define here an alternative
representation of long (multi-digits) integers.

Let A be an n-bit integer, written in a radix 264 as an l-digits integer, where l =
n/64, and where each 64-bit digit ai satisfies 0 ≤ ai < 264. This representation is
unique. Consider a positive m such that 1 < m < 64. We can write A in radix 2m as


−

=

××=
1

0

2
k

i

im
ixA . This representation is unique, and requires k = n/m > l digits, xi,

satisfying 0 ≤ xi < 2m, for i = 0, …, k-1. See Fig. 2 for an example.
If we relax the requirement 0 ≤ xi < 2m, and allow the digits to satisfy only the

inequality 0 ≤ xi < 264, we say that A is written in a Redundant-radix-2m
Representation (redundant representation for short). This representation is not unique.
Figuratively speaking, the redundant representation is simply “embedding the digits
of a number in a big container”.

124 S. Gueron and V. Krasnov

Fig. 2. A 256-bit integer in radix 264 (n=256, l=4) written in radix 229 (m=29) using 9 digits (k
= ceil(n/m) = 9). Each digit can be stored as a 64-bit “element” in a vector of k=9 elements.

An integer A, written with k digits in redundant representation, satisfying A < 2m×k,
can be converted to a radix 2m representation with the same number of digits (k), as
shown in Algorithm 1 (Fig. 3).

Algorithm 1: Redundant-to-2m
Input: U in redundant representation using k digits(assumption: U < 2m×k)
Output: U in radix 2m representation
Flow:

1. temp = 0
2. For i = 0 to k-1

a. temp = temp + ui
b. vi = temp mod 2

m
c. temp = temp/2m

End for
Return V

Fig. 3. Redundant-to-2m conversion (see explanation in the text)

Example 1: take n=1024 and the 1024-bit number A = 21024-105. It has l = 16 digits
in radix 264. The least significant digit is 0xFFFFFFFFFFFFFF97, and the other 15
digits are 0xFFFFFFFFFFFFFFFF. With m = 28, A becomes a number with k = 37
digits in radix 228 the least significant digit is 0xFFFFF97, the most significant digit
is 0xFFFF, and the rest are 0xFFFFFFF. For m=29, A becomes a number with k=36
digits in radix 229 the least significant digit is 0x1FFFFF97 the most significant digit
is 0x1FF and the rest are 0x1FFFFFFF.

Operations on integers that are given in redundant representation can be “vectorized”,
as follows:

Let X and Y be two numbers given in redundant representation, such that

 −

=
××= 1

0
2

k

i

im
ixX ,  −

=
××= 1

0
2

k

i

im
iyY , with 642,0 <≤ ii yx . Let t > 0 be an integer.

Addition: If 642<+ ii yx for i = 0, 1, …, (k-1), then the sum YX + is given, in

redundant representation, by  −

=
××=+ 1

0
2

k

i

im
izYX with 6420; <≤+= iiii zyxz .

Multiplication by constant: If 642<× txi for i = 0, 1, …, (k-1), then the product

Xt × is given by  −

=
××=× 1

0
2

k

i

im
izXt with 6420; <≤×= iii zxtz .

To illustrate, we provide the following example.

 Modular Exponentiation Using AVX Architectures 125

Example 2: n=256, m=29.
A = fa5401a8593c981b||fd42a2802a750928||e930850d63bc2c5f||da8d4ca9655091ad
B = eb9a100d6e586233||50608103451895a2||5572dfe2de045f13||132ba675e3adb497
A in radix 229 =
0000000000fa5401||00000000150b2793||00000000006ff50a||000000001140153a||0000000010
928e93||00000000010a1ac7||000000000f0b17f6||00000000146a654b||00000000055091ad
B in radix 229 =
0000000000eb9a10||0000000001adcb0c||0000000008cd4182||000000000081a28c||0000000009
5a2557||0000000005bfc5bc||000000000117c4c4||00000000195d33af||0000000003adb497
A + B in redundant representation =
0000000001e5ee11||0000000016b8f29f||00000000093d368c||0000000011c1b7c6||0000000019
ecb3ea||0000000006c9e083||000000001022dcba||000000002dc798fa||0000000008fe4644
A + B in radix 229 =
0000000001e5ee11||0000000016b8f29f||00000000093d368c||0000000011c1b7c6||0000000019
ecb3ea||0000000006c9e083||000000001022dcbb||000000000dc798fa||0000000008fe4644
t = 0x00000001fedcba98
t × A in redundant representation =
01f38b30a4869a98||29fe5dc375b44d48||00df6ab21b1ac1f0||226c89ee9750be70||2112420fb2
ef7548||021306c96a787c28||1e05123ba966f610||28bd901be338a288||0a9b1753885a30b8
t × A in radix 229 =
000000000f9c598f||00000000147988b3||000000001cafa2e1||000000000e7f116c||000000001f
e2ceee||000000000387ab9a||000000001aa10e0f||000000000f5376f1||0000000018115d24||00
000000085a30b8

In Fig. 5, we illustrate how redundant representation helps delaying the carry
propagation to the last stage of the multiplication.

3.2 NRMM

NRMM can be computed in a “word-by-word” style, as shown in Algorithm 2, Fig. 4.

Algorithm 2: Word-by-word computation of NRMM (WW-NRMM)
Input:
M, an odd modulus such that 2n-1 < M < 2n (M has n bits in binary form)
Integer 1 < m < 64, such that if k = n/m, then k×m>n+2.
A, B < 2M < 2n+1 given in radix 2m (ai, bi denote their radix 2

m digits)
Pre-computed:k0 = -M

-1 mod 2m

Output: X = NRMM (A, B)
Flow:

1. X = 0
2. For i = 0 to k-1

2.1. X = X + A×bi
2.2. x0 = X mod 2

m

2.3. y = x0×k0 mod 2
m

2.4. X = X + M×y
2.5. X = X/2m

3. Output X

Fig. 4. Word-by-word computation of NRMM

Proof of correctness: note that X = (A×B + ((-M-1×A×B) mod 2k×m)×M)/2k×m.
Therefore, (a) follows immediately and (b) follows from Lemma 1. Note also that if B
= 1, then X mod M = A×B×2-l×m exactly. In step 2.5, X is divisible by 2m due to steps
2.4-2.4 and the definition of k0.The number of digits in the final result remains
unchanged (k), because the result X<2n+1, and k×m>n+2.

126 S. Gueron and V. Krasnov

Fig. 5. Illustration of carry accumulation during a multiplication of two integers, A and B,
using vectorized computations (compare to Fig. 1). Suppose that m=29. A (3 digits) and B (2
digits) are first converted into redundant representation in radix 229. In this representation, they
have 7 and 5 digits, where each digit is smaller than 229, and is stored in a 64-bit “container”
(SIMD element). Then, the sub-products are accumulated, while the carry bits spill into the
“empty space” inside the 64-bit container (which is initially 0). In the end, the result is
“normalized” back to a standard 2m representation, according to Algorithm 1. This result can be
fed to a consecutive multiplication, or transformed back to radix 264.

Remark 4. In the redundant representation, steps 2.1 and 2.4 can be computed
efficiently using vector instructions (VPMULUDQ). Steps 2.2 and 2.3 can be
computed efficiently using scalar instructions, because they operate on a single digit.

The above remark indicates that Algorithm 2 is useful for computing NRMM via a
mix of scalar and vector instructions. Indeed, our implementation uses scalar
instructions to compute the low digits of X, and vector instructions for the other
computations, described in Algorithm 3.

Algorithm 3, for computing NRMM (with the parameter m) assumes the inputs A, B
and M are represented in redundant form, with each digit is strictly smaller than 2m
(we call it “normalized redundant representation”).

Since we want to integrate such an NRMM implementation into a “standard”
implementation, we need to transform our input/output from/to a regular (radix 264)
representation. The cost of such transformation is only few tens of cycles, but if done
for every NRMM, it can add up to a noticeable overhead. For efficiency, we transform
the inputs to a redundant form in the beginning of the exponentiation; carry out all the
operations in the redundant form, during the entire exponentiation; in the end,
transform the result back to the standard representation. This makes the overhead of
the to-and-from transformation negligible, while keeping a standard interface for the
exponentiation function (transparent to the user).

 Modular Exponentiation Using AVX Architectures 127

Algorithm 3 [VNRMM]: Vectorized implementation of NRMM(A,B)
Input: A, B and M, in radix 2m
Pre-computed: k0 = -M

-1 mod M
Output: X = NRMM (A, B)
Flow:
1. x0 = 0, Xq, …,X0 = 0
2. a0 = A mod 2

m (i.e., digit 0 of A)
3. m0 = M mod 2

m (i.e., digit 0 of M)
4. load digits 1, 2, …, (k-1) of A into SIMD registers A1..Aq (q as

required)
5. load digits 1, 2, …, (k-1) of M into SIMD registers M1..Mq (q as

required)
6. addCounter = 0
7. for i = 0 to k-1

7.1. x0 = x0 + a0 × bi
7.2. T = Broadcast bi
7.3. for j = 1 to q

7.3.1. Xj = Xj + Aj × T
7.4. y0 = x0 × k0 mod 2m
7.5. x0 = x0 + m0 × y0
7.6. T = Broadcast y0
7.7. for j = 1 to q

7.7.1. Xj = Xj + Mj × T
7.8. x0 = x0 >> m
7.9. x0 = x0 + X1[0]
7.10. Xq,…,X1 = Xq,…,X1 >> 64
7.11. addCounter = addCounter + 2
7.12. if addCounter ≥ (264-2m)

7.12.1. perform X “cleanup”
7.12.2. addCounter = 0

End for

8. Convert Xq,..,X1, x0: from redundant representation to radix 2
m

 (using Algorithm 1)

Fig. 6. Computing NRMM using combination of vector and scalar operations. In order to avoid
carry overflow, a “cleanup” procedure may be initiated, converting X to normalized 2m
representation.

3.3 Modular Exponentiation Using VNRMM

We note that a windowed method modular exponentiation requires judicious
preparation and use of tables (see [7] for details). In the vectorized implementations,
these tables are larger than the tables that are used for the scalar implementation (that
uses 64-bit digits), because the redundant representation requires more than twice as
many digits. However, since the top 64-m bits of each digit are zeroed in the end of
each NRMM call, and therefore do not need to be stored, we can decrease the size of
the required tables, to some extent.

We briefly mention that in order to be side-channel protected, our implementation
operates in “constant time”: the memory access patterns (and timing) do not depend
on the secret exponent. This is achieved (among other factors) by holding the tables in
a way that a portion of each entry lies in a portion of each cache-line that is used by
the table. Details on choosing the optimal table size and on implementing side-
channel protected table access, is provided in [7].

128 S. Gueron and V. Krasnov

Algorithm 4: w-ary modular exponentiation using VNRMM
Input: A, X and M – n-bit integers, in radix 264 representation
Pre-computed: k0 = -M

-1 mod 264, RR = 22n mod M, w – window size
Output: C = AX mod M
Flow:

1. Let m be the largest integer such that 264-2m > 2×n/m
2. Let A`, RR` and M` be A, RR and M converted to normalized radix 2m
3. Let X be x0 + x1×2w + … + xj×2jw, where 0≤x0,x1…xj<2w
4. Let k0` = k0 mod 2

m = -M-1 mod 2m
5. C2 = VNRMM(RR`, RR`) (congruent to 24n-k×m mod M)
6. C2 = VNRMM(C2, 4k×m – 4n) (congruent to 22k×m mod M)
7. Table[0] = VNRMM(C2, 1)
8. Table[1] = VNRMM(C2, A`)
9. For i = 2,..,2w-1-1 do

9.1. Table[i×2]=VNRMM(M[i], M[i])
9.2. Table[i×2]=VNRMM(M[i×2], M[1])

End for
10. h = m[xj]
11. For i=j-1,…0 do

11.1. For l = 1,…,w
11.1.1. h = VNRMM(h,h)

End for
11.2. h = VNRMM(h, xi)

End for
12. h = VNRMM(h, 1)
13. hh = radix-2m-to-radix-264(h)
14. Return hh

• The access to the Table is side channel protected

Fig. 7. The w-ary modular exponentiation, using VNRMM

4 Implementation, Choice of Parameters and Optimizations

4.1 Choice of Parameters

For our usages, we are mainly interested in n=512, 1024, 2048, (for RSA1024,
RSA2048, RSA4096, respectively). We choose m=29 if n=512 or n=1024, and m=28
when n=2048.

To explain this choice of parameters, we first point out that m = 29 for n = 1024 is
larger than the value of m that is specified in Step 1 of Algorithm 4 (namely m=28).
Indeed, the correctness of Algorithm 4 can be maintained with different choices of m,
as long as the “cleanup” steps are properly applied, to prevent any overflows beyond
the range allowed by the 64 bits container. The tradeoff is clear: a large m decreases
the number of digits of the operands – which improves the efficiency of the
computations. On the other hand, it requires a more frequent “cleanup”, because a
fewer “spare” bits are left for accumulation.

In our case, where n=1024, choosing m=29 leads to 36 digits operands, which
results in 58-bit products, and leaves only 6 “spare” bits for carry-accumulation.
Therefore, cleanup is required after 26=64 accumulations, that is, every 32 iterations
of the loop (Step 7) in Algorithm 3. For n=1024, this loop repeats 36 iterations, so the
cleanup is required only once. With m=28, we have 37 digits operands, and 8 “spare”

 Modular Exponentiation Using AVX Architectures 129

bits, therefore the cleanup is required every 128 iterations of the loop, allowing
exponents of up to 3584 bits without any cleanup.

In our implementation, we optimize the cleanup step (shaving off only the
necessary number of bits), and make m=29 the preferable parameter choice.

4.2 Why Is the AVX2 Architecture Sufficient for an Efficient Vectorized
Implementation?

We explain here why AVX2 is the first SIMD architecture that can support vectorized
NRMM implementation that can outperform the scalar implementation.

For simplicity, we consider a schoolbook scenario, and count the operations and
the tradeoffs. Computing NRMM in redundant representation requires 2×[n/m]2 single
precision multiplications. Similarly, the scalar implementation (in radix 264) requires
2×[n/64]2 single precision multiplications. However, NRMM in redundant
representation requires only one single precision addition per multiplication, whereas
the scalar implementation requires three single precision add-with-carry operations.

Fig. 8. Illustration of VNRMM as described in Fig. 6, as a flow of vector instructions (on the
left) and scalar (ALU) instructions (on the right)

For example, the 1024-bit NRMM using scalar implementation, requires ~512
multiplications and ~1536 additions. The redundant implementation with m=29
requires ~2592 multiplications and ~2592 additions. The total number of
multiplications and additions for the scalar implementation with radix 264 is ~2048
and for the NRMM the instruction total is ~5184 instructions.

A0AN … A1

BiBroadcast Bi

X0XN … X1

64 m

+

K0

YBroadcast Y

M0MN … M1

X0XN … X1

130 S. Gueron and V. Krasnov

Consequently, to make the vectorized code outperform the scalar implementation,
it has to run on a SIMD architecture that can execute a factor of 2.53 more single
precision operations than the scalar implementation. In other words, we need a SIMD
architecture that accommodates 2.53 digits (of 64 bits), implying registers of at least
162 bits. The soon-to-appear AVX2 architecture has registers of 256 bits (4 digits)
with the appropriate integer instructions, and is therefore the first SIMD generation
with the potential to support fast vectorized implementations. We demonstrate here
how this potential can be realized.

By plain counting, one might suspect that the existing (narrower) SIMD
architectures, could also support a vectorized implementation (of modular
exponentiation) that outperforms the scalar implementation. We argue here that this is
not the case on platforms with an efficient 64-bit mul and adc performance, because
the overhead associated with the vectorized implementation is too high. To illustrate,
we consider the SSE3 instructions set, with SSSE3 extensions. We point out that:

- The SSE architectures have only 16 xmm registers. This allows for
storing only 2048 bit of data at a time, which is not enough to keep the
accumulators in registers. This adds overhead for memory traffic.

- The SSE architectures operate only on 16-byte aligned memory
operands, which hinders the “shift-save” optimization.

- The lack of a “broadcast” instruction adds an overhead for loading the
digits of the operands.

4.3 Optimizing the Implementation

Implementing NRMM as in Algorithm 3 is rather straightforward, as illustrated in Fig.
8. However, we identify two bottlenecks in that implementation:

- The expensive right shifting of a vector (of digits) across several registers.
- The latency between the computation of y0 (in step 7.4 of Algorithm 3),

followed by broadcasting to a SIMD register, and the point in time where the
multiplications in step 7.7 can start.

To address these bottlenecks, we use the following optimizations. We first note that
instead of right shifting X, we can keep the values Aq..A1 and Mq..M1 in memory, and
use “unaligned” VPMULUDQ operations with the proper address offset. To do this
correctly, the operands A and M are padded with zeroes. For the second bottleneck,
we preemptively calculate a few digits, using ALU instructions, to achieve a better
pipelining of the ALU and SIMD units.

These optimizations are illustrated, schematically, in Fig. 10. Furthermore, they are
implemented in real code, in the form of an OpenSSL patch, which the readers can
download from [8] and examine.

4.4 Vectorized Redundant Montgomery Square

Modular exponentiation involves NRMM, majority of which are of the form
NRMM(A,A). We therefore add dedicated optimization for this case and call it

 Modular Exponentiation Using AVX Architectures 131

NRMSQR. Unlike NRMM, where we interleave the operations, the function
NRMSQR(A) starts with calculating A2, followed by a Montgomery Reduction. Our
implementation employs the big-numbers squaring method published in [6]: first
creating a copy of A, left shifted by 1. In the redundant representation, this operation
is simple: merely left shifting by 1, of each element. Subsequently, the elements of A,
and “A<<1” are multiplied, as described in Fig. 9.

Algorithm 5 [VNRMSQR]: Vectorized implementation of NRMSQR(A)
Input: A and M, in radix 2m
Pre-computed: k0 = -M

-1 mod M
Output: X, such that X mod M = A2×2-k×m mod M and X<2n+1

Flow:
1. Let A` = A×2 (i.e. a`i = ai << 1)
2. Let s be the number of 64-bit elements in a SIMD register
3. X2q+1, …,X0 = 0
//First stage – perform the square

4. load digits 0, 2, …, (k-1) of A into SIMD registers A0..Aq load
digits 0, 2, …, (k-1) of A` into SIMD registers A`0..A`q

5. for i = 0 to k-1/s
5.1. for j = 0 to s-1

5.1.1. T = Broadcast ai×s+j
5.1.2. X2q+1,…,Xi = X2q+1,…,Xi + (A`q,…,A`i+1,Ai * T << 264×(i×s+j))

//Second stage – perform word-by-word reduction

6. m0 = M mod 2
m (i.e., digit 0 of M)

7. x0 = X0[0]
8. load digits 1, 2, …, (k-1) of M into SIMD registers M0..Mq
9. Xq,…,X0 = Xq,…,X0 >> 64
10. for i = 0 to k-1

10.1. y0 = x0 × k0 mod 2m
10.2. x0 = x0 + m0 × y0
10.3. T = Broadcast y0
10.4. Xq,…,X0 = Xq,…,X0 + (M0,…,M0 * T)
10.5. x0 = x0 >> m
10.6. x0 = x0 + X0[0]
10.7. Xq,…,X0 = Xq,…,X0 >> 64
End for

11. for j = 1 to q
11.1. Xj = Xj + Xj+q+1

12. Convert Xq,..,X1, x0 from redundant representation to radix 2m
according to Algorithm 1.

Fig. 9. Optimized NRMSQR: using combination of vector and scalar instructions

5 Results

To assess our algorithm, we implemented an optimized 1024-bit modular
exponentiation code, using the described mix of vector (AVX2) and scalar
instructions. We integrated this code into OpenSSL, in the form of a fully functional
OpenSSL patch, which accelerates RSA2048. We call this implementation “RSAZ-
AVX2” (the “Z” is for “Zariz” - “fast” in Hebrew). The patch is available at [8].

132 S. Gueron and V. Krasnov

Fig. 10. Optimized VNRMM computation, via a flow of vector instructions (on the left) and
scalar instructions (on the right). To reduce bottlenecks, four redundant digits are loaded into
GPRs, and handled using ALU instructions, while the rest is handled via SIMD instructions.
Vector shifting is performed only once per four digits.

 Modular Exponentiation Using AVX Architectures 133

Fig. 11. The number of instructions in scalar and vector implementations of 1024-bit modular
exponentiation (see explanation in the text)

Fig. 12. Cycles count for a 1024-bit modular exponentiation: Mock RSAZ-AVX2 (see
explanation in the text) compared to other (real) scalar codes. The performance was measured
on an Intel® Core™ i7-2600K processor.

This code can be compiled and tested for correctness using the existing public tools
[23], [13]. However, we cannot report real performance figures, in cycles, at the time
this paper is published: the Intel processor (Codename “Haswell”) that supports
AVX2 will be available only in 2013 [12].

To demonstrate the power of our method, we overcome this difficulty by
approximating the speedup via counting the number of instructions in different

 4,939,945
 4,243,137

 3,268,564

 2,400,729

 -

 1,000,000

 2,000,000

 3,000,000

 4,000,000

 5,000,000

 6,000,000

OpenSSL 1.0.1
(scalar)

RSAZ (scalar) Scalar
implementation

using MULX

RSAZ-AVX2
(vectorized)

N
um

be
r o

f i
ns

tr
uc

tio
ns

1024-bit Modular Exponentiation implementations

2,076,136
1,823,342

1,119,928

-

500,000

1,000,000

1,500,000

2,000,000

2,500,000

OpenSSL 1.0.1 (scalar) RSAZ (scalar) Mock RSAZ-AVX2
(vectorized)

CP
U

 C
yc

le
s

1024-bit Modular Exponentiation implementations

134 S. Gueron and V. Krasnov

modular exponentiation implementations. The instruction can be counted using the
Intel SDE tool, with the “-mix” flag, as described in [13]. As the baseline, we used
three implementations. The first two are public and can be run on the existing
processors: the current (official) OpenSSL 1.0.1 [18], and the best known
implementation (which we call RSAZ) [5]. In addition, to make sure that we compare
to the best-future-implementation, we also generated a new scalar implementation that
uses the new scalar instruction MULX, which is expected to be faster than the existing
scalar implementations (the MULX instruction will appear, together with the AVX2
instructions, in the coming “Haswell” processor [12]). The instructions count for each
implementation is provided in Fig. 11.

Fig. 11 shows that our method requires less than half of the number required by the
current OpenSSL 1.0.1 implementation, ~43% fewer instructions than the currently
best known scalar implementation, and ~26% fewer instructions than a future scalar
code that uses the (coming) MULX instruction. This clearly indicates that our
implementation outperforms the alternatives by a significant margin.

We point out that the instructions count is only an approximation, and cannot be
translated directly to CPU cycles, in an out-of-order architecture. To this end, we add
another comparative approximation via a “Mock implementation”. We took our new
modular exponentiation code and replaced all of the AVX2 instructions with AVX1
instructions (the rationale is that most of these instructions are merely a wider version
of their AVX1 counterparts). This allowed us to measure the performance (of the
mock modular exponentiation) on an existing processor. Performance wise, this gives
us yet another hint to the expected performance (although the output is functionally
incorrect). The numbers are presented in Fig. 12, showing that the mock RSAZ-
AVX2 implementation is 1.85 times faster than OpenSSL 1.0.1, and 1.63 times faster
than the best known scalar implementation (RSAZ). This improvement is quite
consistent with the improvement shown in Fig. 11

6 Conclusion

We introduced here a new method and implementation for computing modular
exponentiation, thus accelerating software performance of RSA on modern high end
processors. Our algorithm utilized the coming AVX2 architecture, and a special
balance between scalar and vector operations. The demonstrated results show that a
significant performance gain (up to 40% over current implementations) will be
available together with the release of the new Intel® Architecture Codename Haswell.

Our vectorization method is scalable, and can gain performance from any wide
(and wider) SIMD architectures. Finally, we point out that our method can also be
used on AVX/SSE architectures. This achieves a significant performance gain for
(low end) processors that have AVX/SSE instructions, and only a 32-bit ALU unit,
such as the current Atom processors.

References

1. Barker, E., Roginsky, A.: Transitions: Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths, p. 5. NIST Special Publication 800-131A
(2011) http://csrc.nist.gov/publications/nistpubs/800-131A/
sp800-131A.pdf

 Modular Exponentiation Using AVX Architectures 135

2. Bernstein, J.D.: Curve25519: New Diffie-Hellman speed records (2006)
3. Brent, R., Zimmermann, P.: Modern Computer Arithmetic. Cambridge University Press

(2010), http://www.loria.fr/~zimmerma/mca/pub226.html (retrieved)
4. Gueron, S.: Enhanced Montgomery Multiplication. In: Kaliski Jr., B.S., Koç, Ç.K., Paar,

C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 46–56. Springer, Heidelberg (2003)
5. Gueron, S., Krasnov, V.: Efficient and side channel analysis resistant 512-bit and 1024-bit

modular exponentiation for optimizing RSA1024 and RSA2048 on x86_64 platforms,
OpenSSL #2582 patch (posted August 2011),
http://rt.openssl.org/Ticket/Display.html?id=2582&user=guest
&pass=guest

6. Gueron, S., Krasnov, V.: Speeding up Big-numbers Squaring. In: IEEE Proceedings of 9th
International Conference on Information Technology: New Generations (ITNG 2012), pp.
821–823 (2012)

7. Gueron, S.: Efficient Software Implementations of Modular Exponentiation. Journal of
Cryptographic Engineering 2, 31–43 (2012),

8. Gueron, S., Krasnov, V.: Efficient, and side channel analysis resistant 1024-bit modular
exponentiation, for optimizing RSA2048 on AVX2 capable x86_64 platforms, OpenSSL
patch (posted June 2012), http://rt.openssl.org/

9. Hassaballah, M., Omran, S., Mahdy, Y.B.: A Review of SIMD Multimedia Extensions and
their Usage in Scientific and Engineering Applications. The Computer Journal 51(6), 630–
649 (2007)

10. Intel: Using Streaming SIMD Extensions (SSE2) to Perform Big Multiplications (2006)
11. Intel: Intel Advanced Vector Extensions Programming Reference,

http://software.intel.com/file/36945
12. Buxton, M. (Intel): Haswell New Instruction Descriptions Now Available!,

http://software.intel.com/en-us/blogs/2011/06/13/haswell-
new-instruction-descriptions-now-available/

13. Intel: Software Development Emulator (SDE), http://software.intel.com/
en-us/articles/intel-software-development-emulator/

14. Koc, Ç.K., Kaliski, B.S.: Analyzing and Comparing Montgomery Multiplication
Algorithms. Micro 16(3), 26–33 (1996),
http://islab.oregonstate.edu/papers/j37acmon.pdf

15. Koç, Ç.K., Walter, C.D.: Montgomery Arithmetic. In: van Tilborg, H. (ed.) Encyclopedia
of Cryptography and Security, pp. 394–398. Springer (2005)

16. Lin, B.: Solving Sequential Problems in Parallel. Application Note, Freescale
Semiconductor (2006)

17. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography,
5th printing. CRC Press (2001)

18. OpenSSL: The Open Source toolkit for SSL/TLS, http://www.openssl.org/
19. Page, D., Smart, P.: Parallel Cryptographic Arithmetic Using a Redundant Montgomery

Representation. IEEE Transactions on Computers 53(11), 1474–1482 (2004)
20. Walter, C.D.: Montgomery exponentiation needs no final subtractions. Electron. Lett. 35,

1831–1832 (1999)
21. Walter, C.D.: Montgomery’s Multiplication Technique: How to Make It Smaller and

Faster. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 80–93. Springer,
Heidelberg (1999)

22. Walter, C.D.: Precise Bounds for Montgomery Modular Multiplication and Some
Potentially Insecure RSA Moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271,
pp. 30–39. Springer, Heidelberg (2002)

23. YASM: The YASM Modular Assembler Project, http://yasm.tortall.net/

	Software Implementation of Modular Exponentiation, Using Advanced Vector Instructions Architectures
	Introduction
	Preliminaries
	The RSA Context
	The Non Reduced Montgomery Multiplication
	The Relevant AVX2 Instructions

	Modular Exponentiation with Vector Instructions
	Redundant Representation
	NRMM
	Modular Exponentiation Using VNRMM

	Implementation, Choice of Parameters and Optimizations
	Choice of Parameters
	Why Is the AVX2 Architecture Sufficient for an Efficient Vectorized Implementation?
	Optimizing the Implementation
	Vectorized Redundant Montgomery Square

	Results
	Conclusion
	References

